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Abstract
Despite the potential benefits of machine learning (ML)
in high-risk decision-making domains, the deployment
of ML is not accessible to practitioners, and there is
a risk of discrimination. To establish trust and accep-
tance of ML in such domains, democratizing ML tools
and fairness consideration are crucial. In this paper, we
introduce FairPilot, an interactive system designed to
promote the responsible development of ML models by
exploring a combination of various models, different hy-
perparameters, and a wide range of fairness definitions.
We emphasize the challenge of selecting the “best” ML
model and demonstrate how FairPilot allows users to
select a set of evaluation criteria, and then displays the
Pareto frontier of models and hyperparameters as an in-
teractive map. FairPilot is the first system to combine
these features, offering a unique opportunity for users
to responsibly choose their model.

1 Introduction
Predictive analytics and machine learning (ML) have
become increasingly prevalent in sensitive decision-
making domains, such as healthcare, finance, criminal
justice, and education. These domains involve high-
stakes decisions with potentially significant impacts on
people’s lives [14, 20, 24]. For instance, in the educa-
tion sector, predictive analytics and ML can be used to
predict student outcomes, identify at-risk students, and
provide personalized learning plans. However, the use of
these technologies in sensitive decision-making domains
is a complex and multifaceted issue.

While ML holds a significant promise for high-risk
domains, its acceptability among practitioners can be
influenced by several factors. Two key factors are the
lack of democratization in deployment and the potential
to exacerbate inequalities. The former refers to the ef-
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fort to make ML tools and technology widely accessible
to a diverse group of users with different expertise and
background. The latter refers to the fact that ML tools
can perpetuate biases and discrimination if not designed
and implemented carefully. For example, a model that
assigns lower probabilities of success to students from
certain demographic groups (such as students of color
or students from low-income backgrounds) could exacer-
bate existing inequalities and result in unfair treatment
for these students. This can create a disconnection be-
tween the use of ML and the values of equity and in-
clusion that are central to the mission of such sensitive
domains (e.g., education).

Consider a domain practitioner who aims to develop
a machine-learning model for a prediction task. Recent
advances in AI have introduced a wide range of choices
for each ML model that can be employed to make
predictions. Having multiple options is beneficial as it
gives the flexibility of choice to the data scientist. On
the other hand, it is not clear which model is “better”
for the given task. Therefore, exploring different options
before making the final selection is cumbersome:

1. Hyperparameters: ML models are often associated
with various hyperparameters that require prede-
fined values before training the model. The selec-
tion of hyperparameters may highly affect the de-
veloped model and its performance. The combina-
tion of different values for hyperparameters makes
the exploration space for each model exponentially
large to the number of its hyperparameters.

2. Time complexity: Training ML models is resource
hungry task that is coupled with a large number of
ML models to be trained and the exponential space
of hyperparameters choices, makes the responsible
model selection process overwhelming, particularly
for practitioners.

3. Multiple evaluation criteria:Model selection solely
based on maximizing the accuracy is not enough,
at least for sensitive decision-making environments
since there often exists a trade-off between the fair-
ness and (accuracy) performance of a model [7].

Copyright © 2023 by SIAM
Unauthorized reproduction of this article is prohibited



On top of that, fairness is not a unique notion;
there are many (more than 21) fairness defini-
tions [5, 29], and those are often in trade-off with
each other [17]. Even more unwieldy, the rela-
tionships between the fairness notions (and model
performance) are context-specific and are not clear
apriori [1]. Therefore, a data scientist is unlikely
to be able to come up with a formula to combine
all fairness and model performance criteria into a
single objective.

Responsible model development without the aid
of assistive exploratory tools is formidable, if not
infeasible, task for data scientists. Conversely, despite
extensive advances by the Fair ML community, there
is a research gap and a desperate need for interactive
explorative systems to help data-scientist practitioners
develop ML models responsibly [3, 4, 18].

This paper is an attempt towards filling this gap.
To the best of our knowledge, FairPilot is the first
interactive system that enables users to explore a com-
bination of (a) various ML models and (b) different
hyperparameter combinations while considering (c) a
wide range of fairness definitions. FairPilot allows the
user to select a set of evaluation criteria and shows the
Pareto frontier of models and hyperparameters as an
interactive map to the users allowing them to choose a
proper model or explore other combinations of evalua-
tion criteria before responsibly finalizing their choice.

The Pareto frontier represents the optimal trade-
offs between various fairness measures and accuracy in
a set of models. Users can visually compare models
on the Pareto frontier and choose the model that
best fits their needs and preferences, depending on
the specific application. For example, if the decision-
making process disproportionately affects certain racial
or gender groups, the preference may be for the model
with the highest fairness (based on a specific metric),
even if it comes at the expense of some accuracy.
Conversely, in other applications, accuracy may be
the more important consideration, and the model that
provides the highest accuracy may be preferred even if
it has lower fairness. Ultimately, the choice of model
will depend on the specific application and the relative
importance of each objective.

Technically speaking, the core idea underlying Fair-
Pilot is that the space of the model/hyperparameter
combinations is independent of the space of model eval-
uation criteria. This enables designing a grid-search
algorithm over the full factorial of the model and hy-
perparameters during the preprocessing time and col-
lecting (and indexing) comprehensive information that
creates an interactive environment for the user explo-
ration phase.

The paper is structured as follows. Section 2 pro-
vides a brief summary of the existing related studies.
Section 3 provides technical background on Pareto
Frontier Multi-objective optimization problems and how
it is adapted for the FairPilot context. In sections, 4
and 5, the architecture and user interface options pro-
vided by FairPilot are explained. Section 6 presents a
case study on the ELS dataset to explore the hyperpa-
rameter space with FairPilot for model selection.

2 Related Work
The democratization and accessibility of machine learn-
ing have been a rapidly growing area of research in
recent years. Many scholars have investigated meth-
ods and tools to make machine learning more accessi-
ble to non-experts and to promote more equitable ac-
cess to the benefits of this technology. An open-source
machine learning platform that allows non-experts to
build and deploy predictive models has been proposed
in [28]. Many others have proposed visualization tech-
niques to help users better understand and interpret
machine learning results [8]. Another area of research
has been the development of automated machine learn-
ing (AutoML) tools, which can automate many of the
tasks typically performed by machine learning experts.
AutoML tools, such as those presented in [11], can make
it easier for non-experts to create effective ML models
without needing to understand the complexities of the
underlying algorithms and techniques.

Most ML models feature a set of hyperparameters
that must be predefined for training, and the choice of
these hyperparameters significantly affects the model’s
ability to make correct predictions [9, 30]. Therefore,
several studies focus on constructing grid or random
search strategies [6, 31], or optimizing for the set of
hyperparameters using sequential learning techniques
(e.g., Bayesian optimization) [27, 31]. However, an
accurate model can be biased and unfair in prediction
since inherent trade-offs exist in using ML for decisions
that impact social welfare.

Fairness in ML involves a growing body of research
dedicated to identifying and addressing biases in algo-
rithms [5, 22]. Fair-ML promotes the idea that algo-
rithms should not produce biased or discriminatory out-
comes and that their decisions should be impartial and
equitable for all individuals, groups, or intersectional
subgroups [12,15]. On the other hand, a fair model can
be inaccurate and useless in practice. Therefore, sev-
eral studies aimed at designing interventions to balance
the trade-off between fairness and accuracy in predictive
modeling tasks [16,19,32].

One resolution to handle the fairness and accuracy
trade-off is attainable by designing a fairness-aware hy-
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perparameter search approach. A fair hyperparameter-
tuning tool promotes consideration of fairness in the
choice of hyperparameter for model selection by measur-
ing the fairness metrics once the model has been trained
and optimized for accuracy. [26] considers algorithmic
policies such as hyperparameters for balancing the so-
cial welfare and private objective (e.g., profit) based on
individual fairness. [25] designs a generally constrained
Bayesian optimization framework and reveals that ac-
curate and fair solutions are achievable by acting solely
on the hyperparameter. [10] provides a simple and flex-
ible intervention to incorporate fairness objectives in
ML pipelines by proposing the fair variants of hyperpa-
rameter optimization algorithms such as Fair Random
Search, Fair TPE, and Fairband.

3 Preliminaries
Fairness-aware exploration on the space of hyperparam-
eters of machine learning models can be considered as
a Multi-objective optimization problem where accuracy
and fairness are conflicting objectives.

Multi-objective optimization [21,23] considers prob-
lems with more than one objective function to be opti-
mized simultaneously. Two popular directions for multi-
objective optimization are 1) combining the optimiza-
tion criteria in form of a single function (Equation 3.1)
and 2) identifying the Pareto frontier.

max
x∈X

f(x)(3.1)

In Equation 3.1 X ∈ Rd is the bounded search space
such that xL ≤ x ≤ xU ,∀x ∈ X with xL and xU

be the coordinate-wise lower and upper bounds, and
f : X → RM is the vector function of the M multiple
objectives, f = (f1(x), . . . , fM (x)).

In the context of FairPilot, the hyperparameter tun-
ing problem can be considered as a black-box function
f(x), where the accuracy fA(x) and fairness fF (x) ob-
jectives are defined over a set of input hyperparame-
ters x ∈ X . This implies that the task of selecting the
optimal model requires considering multiple objectives,
each with its own set of hyperparameters, making it a
complex optimization problem. Due to the conflicting
nature of objectives, there is no unique solution that
optimizes all combination functions f . In such environ-
ments specifying a meaningful function f is challenging
and often not practical for ordinary users.

Therefore, our aim is to find a set of equally
desirable solutions that hold a trade-off between the
objectives, known as Pareto Frontier. The Pareto set
contains only dominant (aka non-dominated) solutions
that cannot be strictly dominated by any other solutions

in at least one objective [13].
Suppose we aim to explore the space of hyperpa-

rameters for solving a binary classification task where
the target variable Y ∈ {0, 1} defines 1 for positive,
and 0 for negative outcomes, and S ∈ {0, 1} is the
sensitive attribute (e.g., race) represent two different
population subgroups (e.g., White and Black). Now,
for a given set of input hyperparameters, the accuracy
metric can be simply defined as the fraction of correct
classification predictions or fA(x) = P (Ŷ = 1|Y =
1) + P (Ŷ = 0|Y = 0). Moreover, there are several
fairness metrics that can be used to measure bias in
predictive modeling for binary classification tasks such
as statistical parity, equal opportunity, and predictive
parity. For instance, statistical parity metric is of the
form fF (x) = P (Ŷ = 1|S = 0) − P (Ŷ = 1|S = 1).
Detailed explanations and formulas of various fairness
metrics are provided in several fair ML studies [22,29].

FairPilot is an interactive exploration tool de-
signed to find non-dominated hyperparameters given
a dataset and user-defined model and fairness metric
choices. FairPilot outputs the set of non-dominated
hyperparameters, P = {x(i) ∈ X |@x′ ∈ X , fF (x

′
) ≤

fF (x
(i)), fA(x

′
) ≥ fA(x

(i))} that can be employed to
train models in a fairness-aware manner. For each ML
model, P reveals the set of hyperparameter values that
can be used to train the model such that is strictly bet-
ter than other models based on at least one of the un-
fairness fF or accuracy fA metrics.

4 System Specification
4.1 Architecture and Implementation FairPilot
is a web-based interactive system that explores the in-
fluence of hyperparameters on the trade-off between ac-
curacy and fairness in predictive modeling. The goal
is to support users in selecting the optimal combination
of hyperparameters for training a model considering the
fairness of the prediction outcome. FairPilot automati-
cally trains models on a discretized space of user-defined
hyperparameters and constructs the Pareto frontier by
considering both accuracy and fairness metrics. The
Pareto frontier contains the non-dominated solutions
where the set of hyperparameters has produced the best
results either from an accuracy or fairness perspective.
FairPilot is developed using Python 3.10.9, and the web
interface is created using Flask framework. The system
generates interactive plots using the Plotly library.

5 User Interface
The following section describes the main components of
the FairPilot user interface (UI).
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Figure 1: FairPilot User Interface.

(a) Selection of the Hyperparameter Space. (b) Advanced settings.

Figure 2: Drop down menus in the input sections.

5.1 Dataset Selection Section. The UI for Fair-
Pilot is shown in Figure 1. To begin using FairPilot,
the user must first specify the dataset of interest. The
dataset consists of a set of predictor variables and a
categorical response variable. Once the dataset is up-
loaded, the user must select the target variable. The
user is then asked to specify the sensitive attributes.
Learning Methods Section. Users can select from
various learning models. The tool can handle a variety
of machine learning models, ranging from basic models
to more complex ones like Neural Networks.
Hyper-Parameter Space Section. This section is
displayed as a dropdown menu, as shown in Figure 2(a),
where the user can manually input the hyperparameter
space or use the default values. It is worth noting
that the set of hyperparameters varies for each model,
and our system provides default values for each. The

backend of our system performs feasibility checks on
user-defined values, and in case of improper range
definition, a notification is sent to the user.
Fairness Metrics Section. The user proceeds to the
Fairness Metrics Section, where they can choose the fair-
ness metrics of interest for their application. By clicking
on the “info” button, a brief description of each metric is
provided. In our system, fairness is defined with regard
to sensitive attributes, which describe social character-
istics of individuals that are considered private, and
can potentially result in discrimination when used in
decision-making. These attributes are often related to
aspects of an individual’s identity, such as race, gender,
and age. Our tool can handle a broad range of fair-
ness metrics, however, based on our previous research,
certain group fairness metrics are highly positively or
negatively correlated, while others are completely or-
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thogonal [1].
Advanced Settings Section. Before performing the
exploration, the user can define additional options by
clicking on the gear wheel icon, as shown in Figure 2(b).
These settings include:

• The number of cross-validation folds to use for each
combination of hyperparameters.

• The resolution of the plots in case of export.

• The option to generate color-blind-friendly plots.

• The ability to perform various data standardization
and imputation pre-processing techniques.

• An automated report generation for the results.

FairPilot’s default setting considers 5-fold cross-
validation, average resolution, color-friendly plots, stan-
dard scalar, and removing NA values for data pre-
processing with automated report generation enabled.
Loading Bar Section. After the user finishes setting
up the desired options for the learning process, they can
run the FairPilot tool by clicking on the Start button.
At this point, a loading bar will appear at the bottom of
the page, as shown in Figure 1, to provide an estimate
of the exploration progress. We utilize the tqdm Python
library to display the loading bar.

5.2 Output Sections. Once the learning process is
complete, FairPilot generates the outputs as listed
below. It is worth noting that the plots presented in
this paper are resulted from analyzing the ELS dataset,
which we shall elaborate on later in §6.

• Individual Model Pareto Frontiers. FairPi-
lot generates interactive plots that display an es-
timated Pareto frontier for each combination of
learning methods and fairness metrics. An ex-
ample is provided in Figure 3. By hovering over
any point on the plot, the user can see the exact
hyper-parameter combination that produced that
performance. Furthermore, colors, symbols, and
sizes, as shown in Figure 3(e), can be used to assist
with interpretations (e.g., which hyper-parameters
have the most significant impact on the final perfor-
mance), and an interactive legend allows the user
to focus on specific hyperparameters.

• Multi-Model Pareto Fronts. FairPilot gener-
ates an interactive plot for each fairness metric that
displays an estimated Pareto frontier for all of the
ML methods combined, allowing the user to check
the overall performance of the framework. Simi-
lar to the Individual Model Pareto Frontiers, the

user can hover over any point on the plot to see the
hyper-parameter combination that produced that
performance. Different colors are used to identify
different ML methods, and an interactive legend
allows the user to focus on specific methods. An
example is provided in Figure 3(b).

• Superimposed Pareto Frontiers FairPilot pro-
duces an interactive graph that superimposes the
Pareto frontiers for each ML method, given a fair-
ness metric. This graph allows the user to under-
stand which learning method is the most promising
overall and if any one method dominates the others.
Figure 3(c) provides a preview of this feature. A
similar plot can be generated for an individual ma-
chine learning (ML) model using all fairness met-
rics. This interactive plot will display the estimated
Pareto frontier for the ML model and allow the user
to explore the impact of different fairness metrics
on the model’s performance.

• Superimposed Individual Model Pareto
Frontiers Given a single ML method, FairPilot
produces an interactive graph that superimposes
the Pareto frontiers for multiple fairness metrics.
This can be used when the user is interested in
more than one metric at a time. A preview is given
in 3(d).

• Pareto Data Frames. FairPilot generates data
frames for each fairness metric that include all the
Pareto points and their corresponding hyperparam-
eter combinations. Additionally, the data frames
allow the user to check the value of other fair-
ness metrics (for example, on the data frame show-
ing the Pareto points for the Predictive Equality
metric, the user can also check the corresponding
Equalized Odds values). Table 2 provides a preview
of this feature.

Our system offers several interactive features that
allow users to customize the visualizations and explore
the data in more detail. In addition to the pop-ups
of information when hovering over data points, users
can select groups of points on the legend to remove
them from the visualization. They can also modify
the hyperparameters that determine the size, color, and
shape of the points in real time, allowing them to gain
more insight into how changes to the hyperparameters
affect model performance. Furthermore, our system
offers basic functionalities such as panning, zooming,
fullscreen view, and the ability to download, which allow
users to interact with the visualizations and explore the
data in different ways.
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6 Case Study
Dataset. In this section, we present a case study to
demonstrate how FairPilot can be used in practice. We
utilize the Education Longitudinal Study of 2002 (ELS)
dataset 1), which is a longitudinal study designed to pro-
vide trend data about critical transitions experienced
by students. For our analysis, we consider the high-
est level of degree as the target variable and create a
binary classification task to predict whether an individ-
ual’s highest degree earned is above or below a bach-
elor’s degree. To be specific, we assign a label of 1
to students who have obtained a college degree (i.e.,
a bachelor’s degree or higher) as the favorable outcome,
while students who have not achieved a college degree
are assigned a label of 0 as the unfavorable outcome. We
consider the sensitive attribute of “race”, which includes
five groups of students: White, Black, Hispanic, Asian,
and Multi-racial (MR). To evaluate fairness, we divide
this attribute into two sub-categories: category 0 com-
prising Black, Hispanic, and MR students, and category
1 comprising Asian and White students. This separa-
tion is based on precedent analysis of the ELS database
in [2]. Data cleaning is performed to identify and re-
name the missing values (based on the documentation)
and remove the observations that have many missing
attributes (> 75% of the attributes are missing). The
non-categorical data is then standardized by subtract-
ing the mean and scaling to unit variance, but no im-
putation is performed. At this point, pre-processing is
considered concluded and it is possible to proceed to
model testing and training.
Experimental setup. We evaluated four ML methods
on the dataset: Decision Tree Classifier (DT), Random
Forest Classifier (RF), Logistic Regression (LR), and
Support Vector Classifier (SVC). Due to the need for
interoperability in the education domain, we did not use
Neural Network (NN), even though it is available in our
tool. The hyperparameters used for each ML method
are presented below along with a brief description.

Decision Tree Classifier: The criterion is a
function used to measure the quality of a split relative
to the ideal case of perfect separation. The min sample
split is the minimum number of samples required to
split an internal node. The minimum sample leaf is the
minimum number of samples required for a node to
become a leaf. The max features is the number of
features to consider when looking for the best split. The
class weight is used to assign different weights to the
classes in the dataset during the training process.

Random Forest Classifier: Same hyperparame-

1For more information about ELS, visit the main website:
https://nces.ed.gov/surveys/els2002/avail_data.asp

ters of the Decision Tree Classifier are used, with the
addition of bootstrap, which is a boolean attribute that
determines whether bootstrap samples are used when
building trees. If False, the whole dataset is used to
build each tree.

Logistic Regression: The hyperparameters used
in logistic regression are penalty, which specify the
norm of the penalty, and C, which is the inverse of
regularization strength.

Support Vector Classifier: Two main hyperpa-
rameters in SVC are C, which is the inverse of the regu-
larization strength, and kernel, which specifies the ker-
nel type to use in the SVC algorithm.

Table 1 shows the range of the attributes that define
the hyperparameter space for different considered ML
models.

Table 1: Hyperparameters Space

Model Hypeparameter Range

Decision Tree

criterion [gini, entropy]
max features [None, sqrt, log2]
min samples split [2, 4, 8, 12, 16, 20]
min samples leaf [1, 4, 8, 12, 16, 20]
class weight [None, balanced]

Random Forest

criterion [gini, entropy]
max features [None, sqrt, log2]
min samples split [2, 4, 8, 12, 16, 20]
min samples leaf [1, 4, 8, 12, 16, 20]
class weight [None, balanced]
bootstrap [False, True]

Logistic Reg.
C [0.001, 0.01, 0.1, 1,

10, 100, 1000]
penalty [l2, none]

SVC
C [0.001, 0.01, 0.1, 1,

10, 100, 1000]
kernel [linear, poly, rbf, sigmoid]

Evaluation. In addition to accuracy, we evaluate the
performance of our models using five fairness metrics,
namely: predictive parity, predictive equality, equal
opportunity, accuracy equality, and equalized odds. The
evaluation is conducted using 10 different data splits for
training and testing. We collect the mean and variance
of both accuracy and fairness metrics across all 10 runs.
For each ML model and hyperparameter combination,
we train and test the models through a brute-force
approach. We then construct the Pareto Front using
the trained models using the two dimensions of fairness
and accuracy. We use the Pareto Front to identify the
optimal model settings.
Results. FairPilot is an assistive tool for exploring the
modeling space and investigating the trade-off between
accuracy and fairness. It serves two distinct objectives:
model interpretation and model selection. For model in-
terpretation, in Figure 3(a), which displays the accuracy
vs equal opportunity Pareto front when using a Random
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Forest. We can observe that the bootstrap is an influ-
ential hyperparameter in determining the performance
of the model. When bootstrap =True, the fitted models
generally have higher accuracy and lower equal opportu-
nity. FairPilot provides a customizable color-coding and
allows the user to select the hyperparameter of interest,
resulting in reports that align with their perspective and
facilitate a better interpretation of the results. In terms
of model selection, the user can check the best possible
configurations at a glance, by hovering on the Pareto
front points as shown in Figure 3(e), for which we use
the Decision Tree classifier and predictive equality for
fairness evaluation. Alternatively, the user can exam-
ine various configurations on the corresponding Pareto
Data Frame (as shown in Table 2). This makes it effort-
less and intuitive for the user to select the appropriate
ML model for their specific application.

Figure 3(b) shows accuracy vs predictive equality
Pareto front considering all different ML models. The
results indicate that SVC achieves the best performance
in terms of the predictive equality, while the Random
Forest classifier tends to be more accurate. Once again,
a clear trade-off is observed. Comparing the model with
the highest accuracy against the model with the highest
fairness, we have to sacrifice 10% in accuracy to achieve
a 25% increase in fairness. The user has the option
to choose any other point on the Pareto front, based
on the application and the desired level of emphasis on
accuracy and fairness.

In Figure 3(c), which displays the superimposed
Pareto fronts of each ML method taken individually
when considering accuracy vs equalized odds, we can
observe that no single ML method dominates over the
others. SVC is capable of producing fairer results, while
RF has better accuracy. However, a trade-off exists in
each Pareto Front, indicating that there is no single best
model for all situations.

Figure 3(d) shows the Pareto front of accuracy
and fairness for the DT model using various fairness
metrics. The results indicate that sacrificing accuracy
for fairness is more achievable for the equal opportunity
metric (yellow line) compared to other metrics. Notably,
by comparing the endpoints of equal opportunity Pareto
front, we observe that a 7% increase in fairness can be
attained with a mere 3% loss in accuracy. However,
the importance assigned to fairness and accuracy in the
model selection process may differ for each user when
considering other fairness metrics.

Figure 3(e) demonstrates the level of personaliza-
tion, interactivity, and density of information provided
by the plots in FairPilot. This graph allows the user to
immediately observe the effects of three hyperparame-
ters at the same time: class weight is represented using

a color code, criterion is indicated using different sym-
bols, and min samples leaf is shown by varying the size
and transparency of the markers. By hovering over any
point on the graph, the user access the exact configura-
tion used, along with the corresponding objective val-
ues. As we can see, a ’balanced’ class weight is able to
obtain generally fairer models while accuracy is higher
if we set the class weight as equal for both classes.

7 Conclusion and Future Work
This paper has presented FairPilot, an innovative solu-
tion for addressing the challenges associated with de-
ploying machine learning models in high-risk decision-
making domains while promoting fairness. FairPilot al-
lows users to explore various models, hyperparameters,
and fairness definitions and displays the Pareto fron-
tier of models and hyperparameters as an interactive
map. This unique combination of features offers users
an opportunity to responsibly choose their ML models
based on their application and objectives. FairPilot’s
ability to explore and visualize the Pareto frontier of
models and hyperparameters enables users to make in-
formed decisions and trade-offs between accuracy and
fairness. The tool also enables users to explore the im-
pact of various hyperparameters on model performance
and fairness, which can be especially useful when deal-
ing with complex models.

In the future, we plan to expand FairPilot’s range
of fairness definitions and integrate new models and hy-
perparameters. We aim to incorporate state-of-the-art
algorithms such as Multi-Objective Bayesian Optimiza-
tion (MOBO) to enable efficient hyperparameter opti-
mization and to make FairPilot compatible with larger
datasets. We also plan to enhance the tool’s ability
to deal with non-binary sensitive features and multiple
sensitive features simultaneously. We believe that this
will enable FairPilot to be more widely applicable in a
range of decision-making domains.

Furthermore, we aim to improve the accessibility
and ease of use of FairPilot for practitioners. This in-
cludes incorporating user-friendly interfaces and work-
flows that allow practitioners to interact with the tool
easily and providing documentation and tutorials to
guide them through the use of FairPilot. Overall, we
believe that FairPilot has the potential to significantly
impact responsible AI and decision-making practices by
enabling informed decisions based on both model per-
formance and fairness criteria.
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(a) Individual Pareto front, Accuracy vs Predictive Equality
using Random Forest.

(b) Multi-Model Pareto front, Accuracy vs Predictive Equal-
ity.

(c) Superimposed Pareto Fronts, Accuracy vs Equalized
Odds.

(d) Single model Pareto fronts, Accuracy vs Multiple metrics
using a Decision Tree.

(e) Individual Pareto Front, Demo of the interactive graph
using Predictive Parity and a Decision Tree.

Figure 3: Output plots of FairPilot
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